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Effects of  relaxational diffusion during rapid evaporation of  a solvent from a polymer solution taking place 

as a result of a thermal shock from the side of  the free surface of the liquid are investigated. It is shown 

that, as a result of  diffusional resistance to evaporation, a polymer-enriched layer is f o rmed  in the vicinity 

of  the phase interface that can stabilize substantially the shape of  the phase interface. 

Diffusional  t ransfe r  in po lymer  sys tems depends  subs tan t ia l ly  on the t empera tu re  and  concentra t ion 

condit ions,  the quality of the solvent, and  the hered i ta ry  factor. The contr ibution of the la t ter  can be character ized 

by the Deborah number  De = )t/tD, where tD is the character is t ic  diffusion time. When De >> 1, the sys tem has 

no possibil i ty of rearranging in the process of diffusional t ransport ,  and  the solvent diffuses pract ical ly  through the 

macromolecular  matrix.  If De << 1, processes of macromolecular  relaxat ion in the solution occur on a much shorter  

time scale than diffusional t ransport ,  and calculation of the concentrat ion field can be carr ied  out on the basis of 

the classical diffusion equation. In the case where De - 1 rear rangement  of polymer chains takes place on a time 

scale comparab le  to the character is t ic  t ime of concentra t ion equi l ibra t ion in the solution.  The  ins tantaneous  

macromolecular  conformation is not equil ibrium, and therefore one should expect the diffusional  t ransfer  to have 

a relaxat ional  character .  According to [1 ], the diffusional flux n is defined in this case as 

n = - P2 f /a (t - t') Vk (t', x) dt ' ,  ~, (t) = D i c5 (t) + ~ exp - , (1) 
o 

where/~ is the memory kernel for a single relaxation time. 

Condi t ions  favorable  for mani fes ta t ion  of re laxa t iona l  processes are  difficult  to c rea te  in t radi t ional  

diffusion exper iments  due to high values of the time scale tD. The  reverse situation is observed dur ing rapid 

evaporation of a solvent from a polymer solution under  the action of a thermal  shock from the s ide of the evaporation 

surface. In this case, diffusional resistance to the evaporation process can turn out to be a t t r ibu tab le  to the value 

of not only the equilibrium t ransfer  coefficient DO, but also the nonclassical parameters  ,t and  D i. 

The objective of the present  work was modeling of the processes under  considerat ion dur ing  nonsta t ionary  

evaporation of the solvent from the surface of the solution with rapid heat supply. 

1. Let us consider  a horizontal layer  of a polymeric liquid heated uniformly to the t empera tu re  T20 = Ts(PO, 

k0). The initial layer  thickness is L. The  space over the layer  is occupied by the sa tu ra ted  vapor at the same 

temperature .  At the initial instant ,  a constant  heat flux q is appl ied to the surface. It is a ssumed  that  the proces" 

takes place at a constant  vapor pressure P0 and transfer  of the evaporat ing component to the phase t ransi t ior  

interface in the liquid is effected by means of a diffusional mechanism. Let us direct the 0x axis from the bottorr 

(x = 0) to the free surface (x = h(t)).  

The heat  flux fed to the evaporation surface goes into evaporation of the solvent and  heat ing of the liquid 

q = fl + k2dT /dx .  We derive the equation of motion for the boundary  based on the assumption that  the densitie:  
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of the subs tances  comprising the solution are  addi t ive and vary negligibly dur ing  evaporat ion and diffusion. For  

h(t)  we obta in  

dh  d T  (2) 
lP2 - ~  = q - k2 -~x ' x = h (t) . 

The  tempera ture  and concentrat ion fields are  obta ined  from the equations 

d T  d 2 T  k 2 
_ a 2 _  a z  _ , ( 3 )  

dt  d x  2 ' P2cp 2 

- o  i + f e x p  - - -  - -  ( 4 )  
dt  d x  2 ~ 0 d x  2 d r .  

The initial and  boundary  condit ions are  as follows: 

~k = 0 ;  ( 5 )  h ( 0 )  = L ;  T ( 0 ,  x) = T 0;  k ( 0 ,  x) = k 0 ;  d x  x=0 

d M  l d M  d__T_T . (6) 
at x = h (t)  : T (t, O) = To ; n = - ( 1 -  kh) ---d-t- ; - - ~  = q - k2 d x , 

= - exp - ~ dr  ; n - p z D i  -~x P2 ~ 0 
(7) 

Ps = PsOI exp [1 - �9 1 +% (1 - O1)21 = P0 ,  

�9 1 = k  h [k h +  (1 - k , O W l - l , "  qJ = Vp/Vsol', -fis = A e x p ( -  B / T h ) .  (8) 

Equation (8) character izes  the phase equil ibrium Ps = ps(Th ,  kh) ,  for which the F l o r y - H u g g i n s  re la t ionship  [2 ] 

was used. 

Let us consider  the initial s tage of evaporat ion,  when the re la t ionship h = L  is fulfilled. For  s implici ty,  we 

cons ide r  phase  t r ans i t i ons  as t ak ing  place according  to an  equi l ibr ium scheme,  and  we make Eqs. (2) - (8)  

dimensionless .  We choose k0, T20, L, and  P2 as scaling factors. Assuming that  k~ = 1 + K, M* = 1 + m, and 7" = 

1 + O, where  K, m, and O are  small  per turbat ions  of the equil ibrium quanti t ies ,  we obtain upon l inear izat ion a 

system of equations whose solution is sought using the Laplace t ransform. After  passing to the image space, we 

find an asymptot ic  expression for the d imensionless  mass per turbat ion  at s ~ •: 

t " .  

rn k 0 ~/ct D K ( 1 k0 ) - 1 - 1 / 2 = -- S ; Ct D = D i / D  0 (9) 

(here and in what  follows we drop the as ter isk  in d imensionlees  quanti t ies) .  

As is shown in [3 ], in a sys tem with the small pa ramete r  Di, manifestat ion of diffusional slowing down of 

the evaporat ion process can be expected at higher  values of k0 than would follow from results  ob ta ined  without  

taking into account re laxat ion effects. Let us consider  the limiting si tuat ion a D ~ 0 (D  i ~ 0) at finite ~.. Upon coming 

back to the inverse t ransform space we find 

rn = 4 t 3 / 2 q L k o  a ~ / 2  (1 - ko) - I  (.,'1;,~) - 1 / 2  ( 3 k 2 T o T s k ) - I  , 
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_ I / 2  . 1 / 2  / 2  - I  
K = 2t qLa 2 QrD0) - I  (k2ToTsk) ; ~) = 2 t l /2qL (k2B) - I  . (10) 

It follows from (10) that relaxational phenomena in diffusion of the evaporating component  to the phase 

interface can reduce substantially the evaporation rate (m -2-1/ '2). 

The problem under consideration was also solved numerically on a finite time interval using a grid algorithm 

[4] generalized to the case of relaxational diffusion transfer. The results obtained bear witness to the possibility 

of substantial concentration of the solution in the vicinity of the phase interface, which leads to redistribution of 

the heat fluxes going into evaporation of the solvent and heating of the layer. 

2. Let us consider the more complex situation when the heat fluxes coming to the phase interface are 

t i m e - d e p e n d e n t .  Let us a s sume  that  a h i g h - t e m p e r a t u r e  spher ical  par t ic le  with rad ius  a is s u b m e r g e d  

instantaneously in a polymer solution with temperature T20 and concentration k20. We assume that a microscopic 

vapor layer  with thickness df o = (Ro - a) << a is formed initially at the solid surface. Assuming the initial 

temperature of the solid particle to be Ts. p >> T20 , we investigate the evaporation dynamics of the low-molecular 

component.  We consider the expansion process of the vapor film to be spherically symmetric,  and we neglect 

convective transfer in the vapor. The considered model formulation of the problem is directly related to the problem 

of utilization of polymeric liquids for hardening cooling of metals and preventing vapor explosions [5 ]. 

We determine the temperature profile in the vapor phase by the method of heat balance assuming that 

a! = const, the pressure is uniform, and the temperature jump in the Knudsen vapor layer is negligible. For thin 

layers, the assumption of small thermal losses in the vapor is valid, which leads to an equation for the temperature 

of the interphase surface in the following form [6] 

dTlh 1 d M  
dt - M dt (Tlh - Tsp)" 

In this case the heat flux can be defined by the expression 

ql = P l k l  ( T s . p -  T 2 h ) / M  ; Pl h = BvMTav ;  Tav = (Ts.p + T2h)/2"  

We write the equation of film surface dynamics within the quasi-acoustic Ki rkwood-Bethe  approximation 

[31: 

d V2h 
R (1 - V 2 h / C 2 )  ~ + 3 ( 1  - v2h/(3C2) ) ~h/2 = 

dP2h ( l I) 
= (1 + V2h/C2) (P2h - P20)/P2 + (1 - V2h/C2) R/(P2C2) dt ' 

R = a + h ( t ) ;  P2h = Pl + r2h,  

where  r2h is the normal component of the tensor of excess stress T of the polymeric liquid at the inlerphase surface. 

For a qualitative analysis of the effect of rheological nonlinearity on the evaporation dynamics of the polymer 

solution it is sufficient to use the equation of state of a hereditary liquid with a single relaxation time [3 I 

T = T (1) + T (2); T (2) = 2 . ( 1  - f l )  E ;  T (1) + 2 |  /-Jt 1) ( T ( I ) E +  ET (1)) 2r/fiE. (12) 

Here  the pa rame te r  a de te rmines  the cont r ibut ion  of nonl inear  terms to the total s t ress  ( 1 / 2  _< a ~ 1). 

Integrodifferential equation (11) can be reduced to one or two ordinary differential equations for a = 1/2 or a = l 

[3 l, which makes it possible to simplify the problem substantially. 

The boundary conditions on the surface of the phase transition and the transfer equations in the liquid are 

formulated similarly to the preceding problem. The system of equations obtained was solved numerically after 

converting to the Lagrange coordinate :7 -- r /R ( t )  that follows the position of the moving evaporation surface. After 
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reduction to dimensionless form with the use of R0, P0, P2, and the equilibrium time of the temperature in the liquid 

tie v = R2o/a2 as scaling factors, we obtain the following equations for k and T2 in the coordinates r/, r: 

' I 
d T  2 vRr/-2 -- Rr/ d T  2 _ 1 d r/2 dT2 

- - +  - -  R2r/~2 - -  L - -  ; dr R dr~ dr/ dr/ ) 

_2 ( 
dk  vRr / - Rr/ dk  a D d dk 
- -  + r/2 + ( 1 3 )  
dr R dr/ LeR2r/2 dr/ 

- -  J" exp - r/2 
0 T R2rl 2 dr~ 

1 - -  Ct D + 
Le;t  

d u .  

The results of calculations by the elimination method with a conservative difference scheme revealed char- 

acteristic regularities of evolution of the vapor film formed as a result of rapid evaporation of the liquid. In particular, 

we have revealed a substantial decrease in the surface concentration of the solvent in the nonlinear stage of the 

process and a decrease in the thermal response as a result of an increase in T2R. Manifestation of relaxational 

phenomena in diffusion can enhance substantially the result observed and thus contribute noticeably to stabilization 

of film boiling of the solution. 

The work was carried out with support from the Russian Fundamental-Research Foundation, grant No. 

95-02-06-073. 

N O T A T I O N  

p, density; t, time; 2, relaxation time; D i, D 0, instantaneous and equilibrium diffusion coefficients; T, 

temperature; p, pressure; k, solvent concentration; l, specific heat of evaporation; j, phase transition rate per unit 

area of the phase interface surface; kl.2, thermal conductivity coefficients of the vapor and the liquid; Cp, specific 

heat at constant pressure; M, mass of the liquid (vapor) in the layer per unit area; A, B, parameters of the phase 

equilibrium equation; )C, F lory-Huggins  constant; Vp, Vso t, specific volumes of the polymer and the solvent; Tsk, 

derivative of the saturation temperature with respect to the solvent concentration calculated at k = k0; R, phase 

interface radius; By, individual gas constant for the vapor; r/, Newton viscosity of the solution; fl, model parameter; 

Le = a 2 / D o ,  Lewis number; v R, radial component of the velocity at the phase interface. Subscripts: 1, 2, vapor, 

liquid; 0, initial state; s, saturation; h, l iquid-vapor  interface; *, dimensionlees quantity; av, averaged; lev, 

levelling; s.p, solid particle; v, vapor. 
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